Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 657: 124173, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685441

RESUMO

Cannabidiol (CBD) suffers from poor oral bioavailability due to poor aqueous solubility and high metabolism, and is generally administered in liquid lipid vehicles. Solid-state formulations of CBD have been developed, but their ability to increase the oral bioavailability has not yet been proven in vivo. Various approaches are investigated to increase this bioavailability. This study aimed to demonstrate the enhancement of the oral bioavailability of oral solid dosage forms of amorphous CBD and lipid-based CBD formulation compared to crystalline CBD. Six piglets received the three formulations, in a cross-over design. CBD and 7 - COOH - CBD, a secondary metabolite used as an indicator of hepatic degradation, were analyzed in plasma. A 10.9-fold and 6.8-fold increase in oral bioavailability was observed for the amorphous and lipid formulations, respectively. However, the lipid-based formulation allowed reducing the inter-variability when administered to fasted animals. An entero-hepatic cycle was confirmed for amorphous formulations. Finally, this study showed that the expected protective effect of lipids against hepatic degradation of the lipid-based formulation did not occur, since the ratio CBD/metabolite was higher than that of the amorphous one.

2.
Int J Pharm ; 646: 123506, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37832701

RESUMO

Among the various 3D printing techniques, FDM is the most studied in pharmaceutical research. However, it requires the fabrication of filaments with suitable mechanical properties using HME, which can be laborious and time-consuming. DPE has emerged as a single-step printing technique that can overcome FDM limits as it enables the direct printing of powder blends without the need of filaments. This study demonstrated the manufacturing of cylindrical-shaped printed tablets containing CBD, a BCS II molecule, with an immediate release. Different blends of PEO/E100 and PEO/SOL, each with 10 % of CBD, were printed and tested according to the Eur. Ph. for uncoated tablets. Each printed cylinder met the Eur. Ph. specifications for friability, mass variation and mass uniformity. However, only the E100-based formulations enabled a CBD immediate release, as formulations containing SOL formed a gel once in contact with the dissolution medium, reducing the drug dissolution rate.


Assuntos
Impressão Tridimensional , Tecnologia Farmacêutica , Pós , Tecnologia Farmacêutica/métodos , Estudos de Viabilidade , Comprimidos/química , Liberação Controlada de Fármacos
3.
Int J Pharm ; 630: 122466, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36493969

RESUMO

The standard of care for patients with Adrenal Insufficiency (AI) is suboptimal. Administration of hydrocortisone three times a day produces plasma cortisol fluctuations associated with negative health outcomes. Furthermore, there is a high inter-individual variability in cortisol need, necessitating a personalized approach. It is hypothesized that a personalized, sustained release formulation would enhance the pharmacotherapy by mimicking the physiological cortisol plasma concentration at a higher level. Therefore, a novel 24 h sustained release 3D printed (3DP) hydrocortisone formulation has been developed (M3DICORT) by coupling hot-melt extrusion with fused deposition modeling. A uniform drug distribution in the 3DP tablets is demonstrated by a content of 101.66 ± 1.60 % with an acceptance value of 4.01. Furthermore, tablets had a stable 24 h dissolution profile where the intra-batch standard deviation was ± 2.8 % and the inter-batch standard deviation was ± 6.8 %. Tablet height and hydrocortisone content were correlated (R2 = 0.996), providing a tool for easy dose personalization. Tablets maintained critical quality attributes, such as dissolution profile (f2 > 60) and content uniformity after process transfer from a single-screw extruder to a twin-screw extruder. Impurities were observed in the final product which should be mitigated before clinical assessment. To our knowledge, M3DICORT is the first 3DP hydrocortisone formulation specifically developed for AI.


Assuntos
Insuficiência Adrenal , Hidrocortisona , Humanos , Preparações de Ação Retardada/uso terapêutico , Insuficiência Adrenal/tratamento farmacológico , Comprimidos , Impressão Tridimensional , Liberação Controlada de Fármacos , Tecnologia Farmacêutica
4.
Int J Pharm ; 613: 121372, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34906649

RESUMO

The objective of this work was to evaluate the impact of physico-chemical properties of pharmaceutical drugs on the optimal mesoporous silica loading methods. Indeed, a good combination between drug and loading process has to be studied to promote the deepest penetration of the drug inside the mesopores, allowing high drug amorphization. Six molecules, namely lidocaine and its hydrochloride, ibuprofen, ketoprofen, artemether and miconazole, with different physico-chemical properties (the ionized character, the acid-base character, the HBDA number, the solubility in sc-CO2 and the behavior under subcritical CO2) were used to produce drug-silica formulations. Different impregnation processes (physical mixing, melting, wetting, sc-CO2 and subcritical CO2 impregnations) have been compared for each drug, in terms of drug recovery and crystallinity. Formulations showed drug percentage close to 100% except for supercritical soluble drug formulations impregnated by using sc-CO2. However, the basic drug character provided less or no drug loss during impregnation. Processing insoluble sc-CO2 molecule under supercritical conditions led to less crystallinity than the correspondent physical mixture suggesting an interesting repulsive effect that forces the drug penetration within the mesopores. Besides, it has been also highlighted that the HBDA number is not sufficient to predict the final drug loading. Melting methods have high interest considering the drugs tested and subcritical CO2 could increase the loading, especially for drugs with high molten viscosity. This study showed that a plethora of loading methods can be used to provide high drug loaded MS formulations with a wide choice of equipment.


Assuntos
Ibuprofeno , Dióxido de Silício , Composição de Medicamentos , Porosidade , Solubilidade
5.
Int J Pharm ; 593: 120122, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33307161

RESUMO

The use of non-viral DNA vectors to topically treat skin diseases has demonstrated a high potential. However, vectors applied on the skin face extracellular barriers including the stratum corneum and intracellular barriers such as the endosomal escape and the nuclear targeting of the plasmid DNA. The aim of this study was to develop a formulation suitable for dermal application and effective for delivering plasmid DNA into cells. Different formulations were prepared using different cationic lipids (DOTAP, DC-Chol, DOTMA) and co-lipids (DOPE, DSPE). Lipoplexes were produced by complexing liposomes with plasmid DNA at different pDNA/CL (w/w) ratios. Our results showed that appropriate pDNA/CL ratios allowing total complexation of plasmid DNA differed depending on the structure of the lipid used. The transfection rates showed that (i) higher rates were obtained with DOTMA lipoplexes, (ii) DC-Chol lipoplexes provided a transfection twice as important as DOTAP lipoplexes and (iii) when DSPE was added, the cytotoxicity decreased while transfection rates were similar. We found that formulations composed of DC-Chol:DOPE:DSPE or DOTMA:DOPE were appropriate to complex plasmid DNA and to transfect human primary dermal fibroblasts with efficacy and limited cytotoxicity. Therefore, these formulations are highly promising in the context of gene therapy to treat skin diseases.


Assuntos
DNA , Lipossomos , Fibroblastos , Humanos , Fosfatidiletanolaminas , Plasmídeos/genética , Transfecção
6.
Eur J Pharm Sci ; 150: 105332, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361178

RESUMO

Recently, mesoporous silica (MS) has been used as a material able to maintain amorphous state of active compounds and therefore, enhance the oral bioavailability of BCSII drugs. Among impregnation methods of MS, techniques using supercritical carbon dioxide (Sc-CO2) are promising tools. Solubility of compounds in Sc-CO2 is reported as one of the most critical parameters, which usually limits its use in drug formulation. Indeed, most of compounds have poor solubility in Sc-CO2. The aim of this work is to compare different MS and to study alternative processes using pressurized CO2 for insoluble molecule in Sc-CO2. By using high pressure reactor, DSC, HPLC and in vitro dissolution tests, the crystallinity and dissolution profiles of MS with different pore size (6.6 nm, 25.0 nm and 2.5 nm) impregnated with fenofibrate (FF) under Sc-CO2 were compared to select the most appropriate carrier. Then, the selected MS has been impregnated under supercritical, subcritical and atmospheric conditions. We have shown that the MS pore size of 6.6 nm provides the higher amorphous drug loading capacity as well as the faster and higher drug dissolution. In addition, FF-MS formulations produced with pressurized CO2 as fusion medium, both in subcritical and supercritical conditions; give similar crystallinity and dissolution results compared to those produced with supercritical fluids as solvent. Through this study, we show new possibilities of using CO2 for insoluble compounds in this fluid.


Assuntos
Dióxido de Carbono/química , Fenofibrato/química , Dióxido de Silício/química , Liberação Controlada de Fármacos , Porosidade , Pressão , Solubilidade
7.
Int J Pharm ; 572: 118793, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31715350

RESUMO

Dermal administration of different macromolecules, such as nucleic acids, remains a real challenge because of the difficulty of crossing the main skin barrier, the stratum corneum (SC). To overcome this barrier, the use of deformable lipid-based nanovectors were developed to increase topical penetration through the SC and to promote the intercellular delivery of drugs. The purpose of this study is to compare the skin penetration of different liposome formulations according to their composition. In vitro and ex vivo experiments using Franz diffusion cells were performed to highlight the effect of (i) lipid charge, (ii) edge activators (EA) and (iii) ethanol on the diffusion properties of nanovectors. We showed that all formulations were not able to cross the SC. However, on a tape stripped skin, we showed that cationic formulations containing an EA and ethanol improved the skin penetration. The use of microneedles was considered to bypass the SC. We have shown that sodium cholate and ethanol were necessary to ensure an appropriate diffusion of liposomes into the dermis when applied by means of microneedles. This could be a promising approach to further deliver efficiently macromolecules such as genes into the skin.


Assuntos
Derme/metabolismo , Etanol/química , Metabolismo dos Lipídeos , Lipídeos/química , Agulhas , Absorção Cutânea , Administração Cutânea , Animais , Derme/efeitos dos fármacos , Desenho de Equipamento , Etanol/farmacologia , Técnicas de Transferência de Genes , Lipossomos , Miniaturização , Absorção Cutânea/efeitos dos fármacos , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...